МИНИСТЕРСТВО ТРАНСПОРТА И КОММУНИКАЦИЙ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТРАНСПОРТА»

Факультет «Промышленное и гражданское строительство» Кафедра «Строительное производство»

СОГЛАСОВАНО

Заведующий кафедрой «Строительное производство»

к.т.н., доц. О.Е.Пантюхов

2016 г.

СОГЛАСОВАНО

Декан факультета«Промышленное и гражданское строительство»

к.т.н., доц. А.Г.Тамкинов

__ 2016 г.

учебно-методический комплекс по учебной дисциплине

«Технологические процессы и аппараты»

для специальности 1-70 01 01 «Производство строительных изделий и конструкций»

Составитель: Т. В. Яшина, кандидат технических наук, доцент

Рассмотрено и утверждено на заседании кафедры «Строительное производство» $\underline{\prime 2}$ $\underline{\prime 04}$ 2016 г., протокол N $\underline{\prime 4}$

Рассмотрено и утверждено на заседании совета факультета промышленного и гражданского строительства» 15° 04 2016 г., протокол N 4

Рецензенты:

- Д. Т. Сафончик зав. кафедрой строительного производства УО «Гродненский государственный университет им. Я.Купалы»;
- Г.Я. Мусафирова- доцент кафедры материаловедения и ресурсосберегающих технологий УО «Гродненский государственный университет им. Я.Купалы».

ОГЛАВЛЕНИЕ

- І. Пояснительная записка.
- II. Теоретический блок.
- III.Практический блок.
- IV. Раздел контроля знаний.
- V. Учебная программа.

І. Пояснительная записка

Учебно-методический комплекс дисциплины (УМК) разработан для использования в образовательном процессе на факультете «Промышленное и гражданское строительство» для студентов специальности 1-70 01 01 «Производство строительных изделий и конструкций»., для специализации: 1-70 01 01 01 «Производство сборных и монолитных железобетонных конструкций».

УМК дисциплины «Технологические процессы и аппараты» позволяет студентам освоить современные и перспективные технологические процессы (механические, гидромеханические, тепловые и массообменные) и аппараты, приобрести навыки по моделированию процессов, что является базой при разработке новых и совершенствовании существующих технологий производства строительных материалов и изделий.

УМК дисциплины «Технологические процессы и аппараты» разработан в соответствии со следующими нормативными документами:

- Положением об учебно-методическом комплексе на уровне высшего образования, утвержденным постановлением Министерства образования РБ от 26.07.2011 №167;
- -Положением об учебно-методическом комплексе специальности (направлению специальности) и дисциплины на уровне высшего образования УО БелГУТ от 24.10.2013 № П-49-2013;
- -Образовательным стандартом ОСВО 1-70 02 01-2013 «Промышленное и гражданское строительство»;

II. Теоретический блок

Литература.

- 1. Процессы и аппараты в технологии строительных изделий: учебнометодическое пособие /Т. В. Яшина, А. Н. Санников: М-во образования Респ. Беларусь, Белорус. гос. ун-т трансп. Гомель: БелГУТ, 2010.—36 с.
- 2. Процессы и аппараты технологии строительных материалов и изделий : учебное пособие для вузов / Е. И. Шмитько. Санкт-Петербург: Проспект Науки, 2010.-736 с.
- 3. Яшина Т. В. Механические процессы и аппараты: Метод. указ. к практич. занятиям и лаб. раб. Ч. 1. Гомель: БелГУТ, 1995. 33 с.
- 4. Процессы и аппараты в технологии строительных материалов: конспект лекций / Б. С. Баталин.–Пермь: Изд-во Перм. гос. техн. ун-та, 2008.–97с.
- 5. Процессы и аппараты в технологии строительных материалов и изделий: учебное пособие/Е. И. Шмитько, Воронеж. гос. арх. строит. у-т.- Воронеж, 2007.- Том .1 (вопросы теории).- 261 с.
- 6. Борщ И. М., Вознесенский В. А., Мухин В.З. и др. Процессы и аппараты в технологии строительных материалов. Киев: Вища школа, 1991. 296 с.
- 7. Еремин Н. Ф. Процессы и аппараты в технологии строительных материалов. М.: Высшая школа, 1996.
- 8. Яшина Т. В. Проектирование оптимальных составов композиционных материалов и технологических процессов их приготовления: Метод. указ. к практич. занятиям и лаб. раб. с элем. науч. исслед. Гомель, 1993. 30 с.

III. Практический блок

ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Материальный баланс процессов и аппаратов.
- 2. Энергический (тепловой) баланс процессов и аппаратов.
- 3. Моделирование технологических процессов на основе теории подобия.
- 4. Анализ энергопотребления и производительности аппаратов для измельчения. Влияние среды на кинетику измельчения.
- 5. Основы проектирования аппаратов воздушной сепарации и гидроклассификации.
- 6. Основы проектирования оптимальных технологических процессов в производстве строительных материалов.

ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

- 1. Изучение устройства и работы аппаратов для измельчения.
- 2. Изучение устройства и работы аппаратов грохочения.
- 3. Изучение устройства и работы аппаратов гидроклассификации.
- 4. Изучение устройства и работы аппаратов воздушной сепарации.
- 5. Расчет процессов виброформования строительных изделий.
- 6. Расчет процессов центрифугирования строительных изделий
- 7. Решение ситуационных задач по технологическим переделам с оптимизацией отдельных процессов и технологии в целом.

ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ (КУРСОВОЕ ПРОЕКТИРОВАНИЕ)

- 1. Моделирование гидродинамических процессов на основе теории подобия.
- 2. Расчет механических процессов и выбор аппаратов дробильно-сортировочной установки.
- 3. Разработка технологической схемы ДСУ.
- 4. Аппараты для непрерывного транспорта строительных материалов.
- 5. Технологическое проектирование бункеров и затворов.
- 6. Технологическое проектирование циклона.
- 7. Технологическое проектирование схемы и работы аппарата (по индивидуальному заданию).
- 8. Охрана и безопасность труда при работе технологических аппаратов.

IV. Раздел контроля знаний

Вопросы к экзамену по дисциплине:

- 1. Основы теории подобия и моделирования процессов.
- 2. Основы теории гидродинамического подобия (теоремы подобия).
- 3. Основы теории гидродинамического подобия (критерии подобия).
- 4. Дифференциальное уравнение равновесия Эйлера.
- 5. Барботаж и пленочное течение жидкости.
- 6. Скорость осаждения и скорость витания твердых частиц в жидкой среде.
- 7. Уравнение Бернулли для идеальной жидкости.
- 8. Уравнение Бернулли для реальной жидкости.
- 9. Гидравлический радиус и эквивалентный диаметр.
- 10. Внутренняя и внешняя задачи гидродинамики.
- 11. Распределение гидростатического давления в покоящейся жидкости (основное уравнение гидростатики).
- 12. Виды и работа барботеров различных типов.
- 13. Расчет гидравлического радиуса и эквивалентного диаметра для трубопровода прямоугольного сечения.
- 14. Энергетический смысл основного уравнения гидростатики.
- 15. Движущая сила массообменных и тепловых процессов.
- 16. Расчет гидравлического радиуса и эквивалентного диаметра для трубопровода кольцевого сечения.
- 17. Движение жидкостей через зернистые слои.
- 18.Потери напора (чем обусловливаются, от чего зависят, как рассчитываются).
- 19. Уравнение Бернулли и его практическое применение.
- 20. Барботаж, его практическая реализация.
- 21. Массоотдача и массопередача.
- 22. Принцип работы и схема циркуляционного смесителя.
- 23. Тепловые процессы (общие понятия и определения).
- 24. Основные законы подобия.

- 25.Схемы барботеров различных типов.
- 26. Процессы и аппараты центрифугирования.
- 27. Теоремы подобия.
- 28. Понятие кипящего псевдоожиженного слоя.
- 29. Скорость осаждения и скорость витания твердых частиц в жидкой среде.
- 30. Способы распространения тепла.
- 31. Виды массообменных процессов: ректификация, адсорбция.
- 32. Движение жидкостей через неподвижные зернистые и пористые слои в технологических процессах производства строительных материалов.
- 33.Схемы прохождения газа (пара) в барботерах различных типов.
- 34. Техника безопасности при работе дробильно-сортировочных аппаратов.
- 35. Виды массообменных процессов.
- 36.Понятие об идеальной и реальной жидкости. Избыточное давление и разрежение.
- 37. Расчет гидравлического радиуса для трубопровода кольцевого сечения.
- 38. Основы теории гидромеханического подобия.
- 39.Суть аналогии между переносом массы, тепла и механической энергии.
- 40. Расчет эквивалентного диаметра для трубопровода кольцевого сечения.
- 41.Процесс теплопередачи. Основное уравнение теплопередачи (закон охлаждения Ньютона).
- 42.Охарактеризовать принципиально различные элементарные способы распространения тепла.
- 43. Техника безопасности при работе с гидромеханическими аппаратами.
- 44. Тепловые процессы. Процесс теплообмена (общие понятия и определения).
- 45. Правила моделирования.
- 46. Расчет гидравлического радиуса и эквивалентного диаметра для канала прямоугольного сечения.
- 47. Основные виды теплоносителей и их свойства.
- 48. Критерии подобия.
- 49. Назначение процесса барботирования и его практическая реализация.
- 50. Энергетическая интерпретация уравнения Бернулли.
- 51. Приближенное моделирование. Метод анализа размерностей.
- 52. Виды теплообменных аппаратов.
- 53.Первый закон Фика.
- 54.Скорость осаждения и скорость витания твердых частиц.
- 55. Виды теплоносителей и их свойства.
- 56. Классификация массообменных процессов.
- 57. Закон Фика.
- 58. Виды местных сопротивлений, их влияние при расчете аппаратов.
- 59. Теоретические основы массообменных процессов. Движущая сила процессов массопереноса.
- 60. Уравнение теплопередачи.
- 61. Аппараты гидроклассификации (работа, применение).
- 62. Уравнения равновесия Эйлера.
- 63. Уравнение массопередачи и движущая сила процесса.

- 64. Техника безопасности при работе с тепловыми аппаратами.
- 65. Уравнение массопередачи и движущая сила процесса.
- 66.Виды массообменных процессов: адсорбция, десорбция, экстракция. В каких технологических процессах производства строительных материалов они используются?
- 67. Техника безопасности и охрана окружающей среды при работе дробильно-сортировочных установок.
- 68. Уравнение теплоотдачи (закон охлаждения Ньютона).
- 69.Виды массообменных процессов: растворение и экстракция. Их практическая реализация в производстве строительных материалов.
- 70. Аппараты воздушной сепарации (работа применения).
- 71.Виды массообменных процессов: кристаллизация и сушка. Их практическая реализация в производстве строительных материалов.
- 72. Формование центрифугированием.
- 73. Массообменные аппараты.
- 74. Движение жидкости через зернистый слой.
- 75. Аппараты процессов перемешивания.

V. Учебная программа

Учреждение образования «Белорусский государственный университет транспорта»

УТВЕРЖДАЮ

Первый проректор учреждения образования «Белорусский государственный университел транспорта»

В. Я. Негрей

<u>28" / 12</u> 2015 г.

Регистрационный № УД-26, 56 /уч.

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И АППАРАРТЫ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-70 01 01 «Производство строительных изделий и конструкций»

Учебная программа по дисциплине «Технологические процессы и аппараты» составлена на основе образовательного стандарта ОСВО 1-70 01 01-2013 «Производство строительных изделий и конструкций».

составитель:

Т. В. Яшина, доцент кафедры «Строительное производство» учреждения образования «Белорусский государственный университет транспорта», кандидат технических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой «Строительное производство» учреждения образования «Белорусский государственный университет транспорта»

(протокол № 14 от 10.12.2015)

Научно-методической комиссией факультета промышленного и гражданского строительства учреждения образования «Белорусский государственный университет транспорта»

(протокол № 10 от 17.12.2015)

Научно-методическим советом учреждения образования «Белорусский государственный университет транспорта"

(протокол № 8 от 28.12.2015)

Актуальность изучения учебной дисциплины

Внедрение строительство новой техники И материалов, В и ресурсосберегающих технологий возможно при высокопроизводительных по устройству аппаратов и машин, принципов овладении студентами знаний анализа и методов интенсификации их работы. Поэтому важно, чтобы в процессе современные обучения студент освоил И перспективные механические, гидромеханические, тепловые и массообменные процессы и аппараты, и мог использовать знания по моделированию процессов при разработке новых и совершенствовании существующих технологий производства строительных материалов и изделий.

Программа разработана на основе компетентностного подхода, требований к формированию компетенций, сформулированных в образовательном стандарте ОСВО 1-70 01 01-2013 «Производство строительных изделий и конструкций».

Дисциплина относится к циклу общепрофессиональных и специальных дисциплин (компонент учреждения высшего образования), осваиваемых студентами специальности 1-70 01 01-2013 «Производство строительных изделий и конструкций».

Цели и задачи учебной дисциплины

Цель дисциплины — формирование знаний, умений и профессиональных компетенций по процессам и аппаратам, применяющимся в технологии изготовления строительных материалов и изделий.

Основными задачами дисциплины являются: освоение основных закономерностей механических, гидромеханических, диффузионных и тепловых процессов, изучение основ теории подобия и моделирования процессов, изучение устройства и работы аппаратов и машин, применяющихся в технологии строительных изделий.

Требования к уровню освоения содержания учебной дисциплины

В результате изучения дисциплины студент должен овладеть следующими академическими (АК) и профессиональными компетенциями (ПК), предусмотренными образовательным стандартом ОСВО 1-70 01 01-2013:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
 - АК-2. Владеть системным и сравнительным анализом;
 - АК-5. Быть способным выдвигать новые идеи (обладать креативностью);
- ПК-14. Создавать условия для получения продукции, соответствующей действующим стандартам и нормам, используя оперативную информацию о

технологическом процессе производства строительных материалов, изделий и конструкций;

ПК-40. Проводить опытно-технологические исследования для создания и внедрения нового оборудования и технологий, их опытно-промышленную проверку и испытания.

Для приобретения профессиональных компетенций ПК-14, 40 в результате изучения дисциплины студент должен

знать:

- основы теории подобия и моделирования процессов в технологии строительных материалов и системного анализа при проектировании и оптимизации процессов;
 - основные понятия о механических и химических процессах и аппаратах;
 - закономерности механического разрушения твердых тел при измельчении;
- гидромеханические процессы и аппараты, тепловые и массообменные процессы в производстве строительных материалов;
 - основы технологических процессов по формованию строительных изделий;
 уметь:
- классифицировать технологические процессы, обеспечивающие производство разнообразных строительных материалов, и анализировать принципы действия машин и аппаратов;
- понимать существо процессов, протекающих на стадиях производства строительных материалов и изделий и эффективно управлять ими;
- использовать знания по системному анализу и моделированию процессов при разработке новых и совершенствованию существующих технологических процессов.

владеть:

- технологическими процессами переработки сырья в производстве строительных материалов и изделий;
- принципиальными схемами, устройством и работой основных механических, гидромеханических, массообменных и тепловых аппаратов.

Структура содержания учебной дисциплины

Содержание дисциплины представлено в виде тем, которые характеризуются самостоятельными укрупненными дидактическими относительно единицами содержания обучения. Содержание тем опирается на приобретенные ранее студентами компетенции при изучении следующих дисциплин, входящих в государственный цикла общепрофессиональных компонент И специальных дисциплин: «Архитектурное проектирование», «Строительное материаловедение». Дисциплина изучается в 6 семестре. Форма получения высшего образования – В соответствии с учебным планом на изучение дисциплины отведено 232 дневная. часа, в том числе 80 аудиторных часа, из них: лекции – 38 часов, лабораторные работы – 12 часов, практические занятия – 14 часов, практические занятия (курсовое проектирование) – 16 часов. Форма текущей аттестации – экзамен, курсовая работа. Трудоемкость дисциплины составляет 6 зачетных единиц.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Основы технологических процессов

Теоретические положения о методах, способах и процессах переработки сырья в производстве строительных материалов и изделий. Понятие о технологических процессах: механических, гидромеханических, тепловых, массообменных; связь процессов с технологическими методами переработки сырьевых материалов в готовую продукцию. Классификация процессов. Параметры процесса.

Тема 2. Общие принципы анализа и расчета процессов и аппаратов

Материальный и энергетический балансы. Интенсивность процессов. Определение основных размеров аппаратов. Основные стадии технологического процесса.

Тема 3. Основы теории подобия и моделирования процессов и аппаратов

Системный анализ технологии как основа построения моделей. Классификация моделей и принцип их построения. Теория подобия и ее инженерное приложение. Роль вычислительной техники в задачах моделирования.

Тема 4. Критерии и теоремы подобия

Критерии подобия и их характеристика. Теоремы подобия. Применение теорем и критериев подобия при моделировании.

Тема 5. Механические процессы и аппараты

Значение процессов измельчения в промышленности строительных материалов. Методы измельчения. Выбор методов измельчения.

Тема 6. Устройство и работа аппаратов для измельчения

Классификация машин для измельчения. Устройство и работа аппаратов. Охрана и безопасность труда при работе механических аппаратов.

Тема 7. Основные законы измельчения

Физико-механические основы измельчения. Законы Кирпичева-Кика, Риттингера, Бонда, Ребиндера. Теоретическая и истинная прочность материала.

Тема 8. Элементы физики твердого тела. Кинетика измельчения

Дефекты кристаллической решетки и их влияние на измельчаемость материала. Общие закономерности влияния среды на кинетику измельчения. Особенности расклинивающего действия поверхностно-активных веществ. Общие принципы экономии расхода энергии на измельчение.

Тема 9. Механическая классификация

Основные схемы рассева. Способы выражения гранулометрического состава материалов. Условия прохождения зерен через отверстия сита. Факторы влияния на качество рассева.

Тема 10. Устройство и работа механических грохотов. Эффективность грохочения

Классификация грохотов, их достоинства и недостатки. Факторы, влияющие на качество рассева. Идеальные и реальные упаковки. Общие принципы подбора гранулометрического состава исходного сырья. Особенности порошков тонкого помола: увеличение удельной растворимости и скорости растворения, аморфизация поверхностного слоя. Значение этих явлений в технологических процессах производства строительных материалов.

Тема 11. Гидравлическая классификация

Гидравлическая классификация: физико-механическая суть процесса, принципы работы установок.

Принципиальные схемы и принцип работы вертикальных и горизонтальных классификаторов.

Тема 12. Воздушная сепарация

Воздушная сепарация: физико-механическая суть процесса, принципы работы установок.

Устройство и принцип работы разных типов воздушных сепараторов.

Тема 13. Перемешивание и дозирование материалов

Общие закономерности гомогенизации масс. Принцип работы установок. Методы оценки качества перемешивания.

Аппараты пневмо- и гидротранспорта. Безопасность труда при работе аппаратов по перемешиванию, дозированию и транспортированию матералов.

Тема 14. Гидромеханические процессы и аппараты

Движение тел в жидкостях. Течение неньютоновских жидкостей. Реологические модели и их практическое значение. Осаждение частиц под действием силы тяжести. Движение жидкости через неподвижные и подвижные зернистые и пористые слои. Гидродинамика кипящих зернистых слоев. Особенности двухфазных потоков. Барботаж и пленочное течение жидкостей.

Принципы оценки пластичновязких свойств систем. Процесс образования неоднородных систем эмульсии, суспензии и пасты.

Тема 15. Основные законы гидродинамики для расчета процессов и аппаратов

Внутренняя и внешняя задачи гидродинамики. Скорость и расход жидкости. Критерии Рейнольдса, уравнение Бернулли. Уравнение неразрывности потока. Гидравлические сопротивления в трубопроводах.

Гидродинамика взвешенного слоя. Методы разрушения потоков. Принципиальные схемы аппаратов. Основы пневмо- и гидротранспорта.

Тема 16. Тепловые процессы и аппараты

Основные виды теплоносителей и их свойства. Внешний и внутренний теплообмен. Движущая сила тепловых процессов. Тепловая обработка строительных материалов как совокупность гидродинамических, тепловых и массообменных процессов. Влияние структуры материала и формы изделия на скорость процессов теплообмена. Теоретические основы процесса сушки, тепловлажностной обработки и обжига.

Механизм тепломассообмена и принципы подхода к обоснованию режимов обработки. Классификация установок для тепловой обработки строительных материалов и их принципиальные схемы. Возможности экономии энергозатрат при проведении тепловых процессов. Безопасность при работе с теплоаппаратами.

Тема 17. Массообменные (диффузионные) процессы и аппараты

Основы массопередачи. Основные законы массопередачи. Классификация массообменных процессов. Массообменные процессы в производстве строительных материалов.

Особенности внутреннего массообмена капилярно-пористых тел. Влияние структуры материалов и формы изделия на скорость процессов массообмена.

Тема 18. Общие закономерности формования изделий

Пластично-вязкие свойства масс и их влияние на выбор способа формования.

Виброформование, центрифугирование, литье, прессование, пластическое формование. Характерные дефекты в отформованных изделиях и возможные пути их устранения.

Принципиальные схемы аппаратов для уплотнения и формования масс. Охрана и безопасность труда при работе технологических аппаратов.

Тема 19. Принципы оптимизации технологических процессов

Понятие о структуре и принципах функционирования систем управления технологическими процессами. Цель и критерии оптимизации. Уравнение регрессии, изолиния поверхности, их анализ и выбор оптимальных процессов. Перспективные направления совершенствования технологии производства строительных изделий, внедрение энергосберегающих технологий.

ХАРАКТЕРИСТИКА КУРСОВОЙ РАБОТЫ

В программе предусмотрено выполнение студентами курсовой работы на тему «Технологические процессы и аппараты».

В курсовой работе предусматривается выполнение технологических расчетов механических и гидромеханических процессов и аппаратов, моделирование на основании теорем и критериев подобия, разработка схемы и изучение работы аппарата по технологическому переделу строительной продукции.

Примерное содержание курсовой работы:

- 1. Моделирование процессов на основе теории подобия;
- 2. Механические процессы и аппараты. Проектирование аппаратов ДСУ;
- 3. Гидромеханические процессы и аппараты;
- 4. Разработка аппаратов в технологии производства строительных материалов;
- 5. Охрана и безопасность труда при работе технологических аппаратов.

Курсовая работа состоит из одного листа чертежа (формат A1) и пояснительной записки объемом 15-20 страниц (формат A4), которая должна иметь задание, оглавление, введение, постраничную нумерацию, перечень использованной литературы и ссылки на литературу.

На чертеже должны быть размещены: схемы, иллюстрирующие механические процессы и комплекс аппаратов ДСУ, гидромеханические аппараты , схема технологического аппарата (по индивидуальному заданию).

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА

			Колич	ество				
	Название темы	аудит	горных ч	насов		ечение		Формы контроля знаний
Номер темы,		лекции	практические занятия	занятия (курсовое проектирование)	лабораторные работы	Материальное обеспечение занятия	Литература	
1	2	3	4	5	6	7	8	9
1.	Тема 1. Основы процессов (2ч) основы процессов	2						
1.1.	1. Теоретические положения о методах, способах и процессах переработки сырья в производстве строительных материалов и изделий. Понятие о технологических процессах: механических, гидромеханических, тепловых, массообменных; связь процессов с технологическими методами переработки сырьевых материалов в готовую продукцию. 2. Классификация процессов. Параметры процесса.	2				у, УП,	[3,4]	
2.	Тема 2. Общие принципы анализа и расчета процессов и аппаратов (6ч)	2			4			
2.1	1.Материальный и энергетический балансы. Интенсивность процессов. 2.Определение основных размеров аппаратов. Основные стадии технологического процесса.	2			4	У, УП	[1-4]	Защита лабораторной работы
3.	Тема 3. Основы теории	2						

	подобия и моделирования							
	процессов и аппаратов (2ч)							
3.1	1. Системный анализ технологии как основа построения моделей. Классификация моделей и принцип их построения. 2. Теория подобия и ее инженерное приложение. Роль вычислительной техники в задачах моделирования.	2				У, УП,	[3,4]	
4.	Тема 4. Критерии и теоремы подобия (6ч)	2		2	2			
4.1	1. Критерии подобия и их характеристика. 2. Теоремы подобия. Применение теорем и критериев подобия при моделировании.	2		2	2	у, уп, мп,	[1-4]	Защита лабораторной работы
5.	Тема 5. Механические процессы и аппараты (2ч)	2						
5.1	1. Значение процессов измельчения в промышленности строительных материалов. Методы измельчения. Выбор методов измельчения.	2				У, УП,	[1-3]	
6.	Тема 6. Устройство и работа аппаратов для измельчения (6ч)	2	2	2				
6.1	Классификация машин для измельчения. Устройство и работа аппаратов. Охрана и безопасность труда при работе механических аппаратов.	2	2	2		У, УП, ПЛ, МП,	[1-3, 6-8]	Тематический опрос Защита курсовой работы
7.	Тема 7. Основные законы измельчения (4ч)	2			2			
7.1	1.Физико-механические основы измельчения.	2			2	КЛ, У,	[2-4]	Защита лабораторной

	2.Законы Кирпичева-Кика,				УП,		работы
	Риттингера, Бонда, Ребиндера.				МΠ,		-
	3Теоретическая и истинная				14111,		
	прочность материала.						
8.	Тема 8. Элементы физики твердого тела. Кинетика измельчения (2ч)	2					
	1.Дефекты кристаллической решетки и их влияние на измельчаемость материала.						
8.1	2.Общие закономерности влияния среды на кинетику измельчения. Особенности расклинивающего действия поверхностно-активных веществ.	2			У, УП,	[3,4]	
	3. Общие принципы экономии расхода энергии на измельчение.						
9.	Тема 9. Механическая классификация (2ч)	2					
9.1	 Основные схемы рассева. Способы выражения гранулометрического состава материалов. Условия прохождения зерен через отверстия сита. Факторы влияния на качество рассева. 	2			У, УП,	[3,4]	
10.	Тема 10. Устройство и работа механических грохотов. Эффективность грохочения (6ч)	2	2	2			
10.1	1.Классификация грохотов, их достоинства и недостатки. Факторы, влияющие на качество рассева. 2.Идеальные и реальные упаковки. Общие принципы подбора гранулометрического состава исходного сырья.	2	2	2	У, УП, КЛ	[2-4]	Тематический опрос Защита курсовой работы
	3.Особенности порошков тонкого						

	помола: увеличение удельной растворимости и скорости растворения, аморфизация поверхностного слоя. Значение этих явлений в технологических процессах производства строительных материалов.							
11	Тема 11. Гидравлическая классификация (5ч)	2	2		1			
11.1	1. Гидравлическая классификация: физико-механическая суть процесса, принципы работы установок. 2. Принципиальные схемы и принцип работы вертикальных и горизонтальных классификаторов.	2	2		1	У, УП, ПЛ.	[3,4]	Защита лабораторной работы Тематический опрос
12	Тема 12. Воздушная сепарация(5ч)	2	2		1			
12.1	1.Воздушная сепарация: физикомеханическая суть процесса, принципы работы установок. 2.Устройство и принцип работы разных типов воздушных сепараторов.	2	2		1	У, УП, МП ПЛ.	[3,4]	Защита лабораторной работы Тематический опрос
13	Тема 13. Перемешивание и дозирование материалов(6ч)	2		4				
13.1	1.Общие закономерности гомогенизации масс. Принцип работы установок. Методы оценки качества перемешивания. 2. Аппараты пневмо- и гидротранспорта. 3. Безопасность труда при работе аппаратов по перемешиванию, дозированию и транспортированию матералов	2		4		У, УП, МП	[1-4, 6-8]	Защита курсовой работы
14	Тема 14. Гидромеханические процессы и аппараты(2ч)	2						
14.1	1.Движение тел в жидкостях. Течение неньютоновских	2				У, УП,	[3,4]	

	жидкостей. Реологические модели и их практическое значение. Осаждение частиц под действием силы тяжести. 2.Движение жидкости через неподвижные и подвижные зернистые и пористые слои. Гидродинамика кипящих зернистых слоев. Особенности двухфазных потоков. Барботаж и пленочное течение жидкостей. 3.Принципы оценки пластичновязких свойств систем. Процесс образования неоднородных систем эмульсии, суспензии и пасты.				ПЛ.		
15	Тема 15. Основные законы гидродинамики для расчета процессов и аппаратов(6ч)	2		4			
15.1	1.Внутренняя и внешняя задачи гидродинамики. Скорость и расход жидкости. 2.Критерии Рейнольдса, уравнение Бернулли. Уравнение неразрывности потока. 3.Гидравлические сопротивления в трубопроводах. Гидродинамика взвешенного слоя. Методы разрушения потоков. 4. Принципиальные схемы аппаратов. Основы пневмо- и гидротранспорта.	2		4	У, УП, ПЛ. МП	[1-4]	Защита курсовой работы
16	Тема 16. Тепловые процессы и аппараты(4ч)	2	2				
16.1	1.Основные виды теплоносителей и их свойства. Внешний и внутренний теплообмен. Движущая сила тепловых процессов. Тепловая обработка строительных материалов как совокупность гидродинамических, тепловых и массообменных процессов.	2	2		У, УП, ПЛ.	[3,4]	Тематический опрос

18.1	Тема 18. Общие закономерности формования изделий(8ч) 1.Пластично-вязкие свойства масс и их влияние на выбор способа формования. 2.Виброформование, центрифугирование, литье,	2	4	2		У, УП, ПЛ.	[3,4]	Защита курсовой работы Тематический опрос
17.1	1.Основы массопередачи. Основные законы массопередачи. Классификация массообменных процессов. Массообменные процессы в производстве строительных материалов. 2.Особенности внутреннего массообмена капилярнопористых тел. Влияние структуры материалов и формы изделия на скорость процессов массообмена.	2			2	У, УП, ПЛ.	[3,4]	Защита лабораторной работы
17	4.Безопасность при работе с теплоаппаратами. Тема 17. Массообменные (диффузионные) процессы и аппараты(4ч)	2			2			
	процесса сушки, тепловлажностной обработки и обжига. Механизм тепломассообмена и принципы подхода к обоснованию режимов обработки. 3. Классификация установок для тепловой обработки строительных материалов и их принципиальные схемы. Возможности экономии энергозатрат при проведении тепловых процессов.							
	Влияние структуры материала и формы изделия на скорость процессов теплообмена. 2. Теоретические основы							

	дефекты в отформованных изделиях и возможные пути их устранения. 3.Принципиальные схемы аппаратов для уплотнения и формования масс. 4.Охрана и безопасность труда при работе технологических аппаратов.					
19	Тема 19. Принципы оптимизации технологических процессов(2ч)	2				
19.1	1.Понятие о структуре и принципах функционирования систем управления технологическими процессами. Цель и критерии оптимизации. Уравнение регрессии, изолиния поверхности, их анализ и выбор оптимальных процессов. 2.Перспективные направления совершенствования технологии производства строительных изделий, внедрение энергосберегающих технологий.	2		У, УП, ПЛ. МП	[3-5]	Контрольный опрос

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ: У – учебник; УП – учебное пособие; КЛ – курс лекций;

МП – методические пособия, ПЛ – плакаты.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Методы (технологии) обучения

Основными методами (технологиями) обучения, отвечающими целям изучения дисциплины, являются:

- элементы проблемного обучения (проблемное изложение, вариативное изложение, частично-поисковый метод), реализуемые на лекционных занятиях;
- элементы учебно-исследовательской деятельности, реализация творческого подхода, реализуемые на лабораторных и практических занятиях, при самостоятельной работе;
- коммуникативные технологии (дискуссия, учебные дебаты), реализуемые на практических занятиях;
 - проектные технологии, используемые при выполнении курсовой работы.

Организация самостоятельной работы студентов

При изучении дисциплины используются следующие формы самостоятельной работы:

- контролируемая самостоятельная работа в виде решения индивидуальных задач в аудитории во время проведения практических занятий и лабораторных работ под контролем преподавателя в соответствии с расписанием;
 - подготовка курсовой работы по индивидуальным заданиям.

Диагностика компетенций студента

Оценка учебных достижений студента на экзамене и при защите курсовой работы производится по десятибалльной шкале.

Оценка учебных достижений студента при выполненных лабораторных работ проводится по системе зачет (незачет).

Оценка промежуточных учебных достижений студентов осуществляется в соответствии с десятибалльной шкалой оценок.

Для оценки достижений студентов используется следующий диагностический инструментарий (в скобках – какие компетенции проверяются):

- проведение текущих контрольных опросов по отдельным темам (ПК-17, ПК-31);
- защита выполненных лабораторных работ и индивидуальных заданий на практических занятиях (ПК-40);
 - защита курсовой работы (АК-1, АК-2, АК-5, ПК-14, ПК-40);

- сдача экзамена по дисциплине (АК-1, АК-2, АК-5, ПК-14).

Критерии оценок результатов учебной деятельности студентов

Оценка результатов учебной деятельности студента по учебной дисциплине производится по десятибалльной шкале.

10 баллов – десять:

систематизированные, глубокие и полные знания по всем разделам учебной программы, а также по основным вопросам, выходящим за ее пределы;

точное использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы;

безупречное владение инструментарием учебной дисциплины, умение его эффективно использовать в постановке и решении научных и профессиональных задач;

выраженная способность самостоятельно и творчески решать сложные проблемы в нестандартной ситуации;

полное и глубокое усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины;

умение ориентироваться в теориях, концепциях и направлениях по изучаемой дисциплине и давать им критическую оценку, использовать научные достижения других дисциплин;

творческая самостоятельная работа на лабораторных и практических занятиях, активное участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

9 баллов – девять:

систематизированные, глубокие и полные знания по всем разделам учебной программы;

точное использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы;

владение инструментарием учебной дисциплины, умение его эффективно использовать в постановке и решении научных и профессиональных задач;

способность самостоятельно и творчески решать сложные проблемы в нестандартной ситуации в рамках учебной программы;

полное усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины;

умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой дисциплине и давать им критическую оценку;

самостоятельная работа на лабораторных и практических занятиях, творческое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

8 баллов – восемь:

систематизированные, глубокие и полные знания по всем поставленным вопросам в объеме учебной программы;

использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы;

владение инструментарием учебной дисциплины, умение его эффективно использовать в постановке и решении научных и профессиональных задач;

способность самостоятельно решать сложные проблемы в рамках учебной программы;

усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины;

умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой дисциплине и давать им критическую оценку;

активная самостоятельная работа на лабораторных и практических занятиях, систематическое участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

7 баллов - семь:

систематизированные, глубокие и полные знания по всем разделам учебной программы;

использование научной терминологии, лингвистически и логически правильное изложение ответа на вопросы, умение делать обоснованные выводы;

владение инструментарием учебной дисциплины, умение его использовать в постановке и решении научных и профессиональных задач;

усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины;

умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой дисциплине и давать им критическую оценку;

самостоятельная работа на лабораторных и практических занятиях, участие в групповых обсуждениях, высокий уровень культуры исполнения заданий.

6 баллов – шесть:

достаточно полные и систематизированные знания в объеме учебной программы;

использование необходимой научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы;

владение инструментарием учебной дисциплины, умение его использовать в решении учебных и профессиональных задач;

способность самостоятельно применять типовые решения в рамках учебной программы;

усвоение основной литературы, рекомендованной учебной программой дисциплины;

умение ориентироваться в базовых теориях, концепциях и направлениях по изучаемой дисциплине и давать им сравнительную оценку;

самостоятельная работа на лабораторных и практических занятиях, периодическое участие в групповых обсуждениях, хороший уровень культуры исполнения заданий.

5 баллов – пять:

достаточные знания в объеме учебной программы;

использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать выводы;

владение инструментарием учебной дисциплины, умение его использовать в решении учебных и профессиональных задач;

способность самостоятельно применять типовые решения в рамках учебной программы;

усвоение основной литературы, рекомендованной учебной программой дисциплины;

умение ориентироваться в базовых теориях, концепциях и направлениях по изучаемой дисциплине и давать им сравнительную оценку;

самостоятельная работа на лабораторных и практических занятиях, участие в групповых обсуждениях, средний уровень культуры исполнения заданий.

4 балла – четыре, ЗАЧТЕНО:

достаточный объем знаний в рамках учебной программы;

усвоение основной литературы, рекомендованной учебной программой дисциплины;

использование научной терминологии, стилистическое и логическое изложение ответа на вопросы, умение делать выводы без существенных ошибок;

владение инструментарием учебной дисциплины, умение его использовать в решении стандартных (типовых) задач;

умение под руководством преподавателя решать стандартные (типовые) задачи;

умение ориентироваться в основных теориях, концепциях и направлениях по изучаемой дисциплине и давать им оценку;

работа под руководством преподавателя на лабораторных и практических занятиях, допустимый уровень культуры исполнения заданий.

3 балла – три, НЕЗАЧТЕНО:

недостаточно полный объем знаний в рамках учебной программы;

знание части основной литературы, рекомендованной учебной программой дисциплины;

использование научной терминологии, изложение ответа на вопросы с существенными лингвистическими и логическими ошибками; слабое владение инструментарием учебной дисциплины, некомпетентность в решении стандартных (типовых) задач;

неумение ориентироваться в основных теориях, концепциях и направлениях изучаемой дисциплины;

пассивность на лабораторных и практических занятиях, низкий уровень культуры исполнения заданий.

2 балла – два, НЕЗАЧТЕНО:

фрагментарные знания в рамках учебной программы;

знание отдельных литературных источников, рекомендованных учебной программой дисциплины;

неумение использовать научную терминологию дисциплины, наличие в ответах грубых стилистических и логических ошибок;

пассивность на лабораторных и практических занятиях, низкий уровень культуры исполнения заданий.

1 балл – один, НЕЗАЧТЕНО:

отсутствие знаний и компетенций в рамках учебной программы или отказ от ответа.

Критерии оценки промежуточной аттестации

Промежуточная аттестация студентов во время контрольных сроков проводится по десятибалльной шкале.

10 баллов:

- систематизированные, глубокие и полные знания по темам 1-10, 11-17 учебной программы, а также по основным вопросам, выходящим за их пределы;
- точное использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы, умение анализировать и делать полные выводы;
- полное и глубокое усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины по темам1-10, 11-17;
- творческая самостоятельная работа на лабораторных и практических занятиях, высокий уровень культуры исполнения заданий.

9 баллов:

- систематизированные, глубокие и полные знания по темам 1-10, 11-17 учебной программы;
- точное использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы;

- полное усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины, умение анализировать и делать полные выводы;
- творческая самостоятельная работа на лабораторных и практических занятиях, высокий уровень культуры исполнения заданий.

8 баллов:

- систематизированные и полные знания по темам 1-10, 11-17 в объеме учебной программы;
- использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать обоснованные выводы;
- усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины;
- активная самостоятельная работа на лабораторных и практических занятиях, высокий уровень культуры исполнения заданий.

7 баллов:

- -достаточно полные и систематизированные, знания по темам 1-10, 11-17 учебной программы;
- использование научной терминологии, лингвистически и логически правильное изложение ответа на вопросы, умение делать обоснованные выводы;
- усвоение основной и дополнительной литературы, рекомендованной учебной программой дисциплины;
- самостоятельная работа на лабораторных и практических занятиях, высокий уровень культуры исполнения заданий.

6 баллов:

- достаточно полные знания по темам 1-10, 11-17 учебной программы;
- использование необходимой научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать выводы;
- усвоение основной литературы, рекомендованной учебной программой дисциплины;
- активная самостоятельная работа на лабораторных и практических занятиях, высокий уровень культуры исполнения заданий.

5 баллов:

- достаточные знания по темам1-10, 11-17 учебной программы;
- использование научной терминологии, стилистически грамотное, логически правильное изложение ответа на вопросы, умение делать выводы;
- усвоение основной литературы, рекомендованной учебной программой дисциплины;
- самостоятельная работа на лабораторных и практических занятиях, высокий уровень культуры исполнения заданий.

4 балла:

- достаточный объем знаний по темам1-10, 11-17;
- усвоение основной литературы, рекомендованной учебной программой дисциплины;
- работа под руководством преподавателя на лабораторных и практических занятиях, допустимый уровень культуры исполнения заданий.

3 балла:

- недостаточно полный объем знаний по темам1-10, 11-17;
- знание части основной литературы, рекомендованной учебной программой дисциплины;
- пассивность на лабораторных и практических занятиях, низкий уровень культуры исполнения заданий.

2 балла:

- фрагментарные знания в рамках тем1-10, 11-17;
- знания отдельных литературных источников, рекомендованных учебной программой дисциплины;
- пассивность на лабораторных и практических занятиях, низкий уровень культуры исполнения заданий.

1 балл:

- отсутствие знаний и компетенций по темам 1-10, 11-17 или отказ от ответа.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Процессы и аппараты в технологии строительных изделий: учебнометодическое пособие /Т. В. Яшина, А. Н. Санников: М-во образования Респ. Беларусь, Белорус. гос. ун-т трансп. Гомель: БелГУТ, 2010.—36 с.
- 2. Процессы и аппараты технологии строительных материалов и изделий : учебное пособие для вузов / Е. И. Шмитько. Санкт-Петербург: Проспект Науки, 2010.- 736 с.
- 3. Яшина Т. В. Механические процессы и аппараты: Метод. указ. к практич. занятиям и лаб. раб. Ч. 1. Гомель: БелГУТ, 1995. 33 с.
- 4. Процессы и аппараты в технологии строительных материалов: конспект лекций / Б. С. Баталин.–Пермь: Изд-во Перм. гос. техн. ун-та, 2008.–97с.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

1. Процессы и аппараты в технологии строительных материалов и изделий: учебное пособие/Е. И. Шмитько, Воронеж. гос. арх. - строит. ут.- Воронеж, 2007.- Том .1 (вопросы теории).- 261 с.

- 2. Борщ И. М., Вознесенский В. А., Мухин В.З. и др. Процессы и аппараты в технологии строительных материалов. Киев: Вища школа, 1991. 296 с.
- 3. Еремин Н. Ф. Процессы и аппараты в технологии строительных материалов. М.: Высшая школа, 1996.
- 4. Яшина Т. В. Проектирование оптимальных составов композиционных материалов и технологических процессов их приготовления: Метод. указ. к практич. занятиям и лаб. раб. с элем. науч. исслед. Гомель, 1993. 30 с.

ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Материальный баланс процессов и аппаратов.
- 2. Энергический (тепловой) баланс процессов и аппаратов.
- 3. Моделирование технологических процессов на основе теории подобия.
- 4. Анализ энергопотребления и производительности аппаратов для измельчения. Влияние среды на кинетику измельчения.
- 5. Основы проектирования аппаратов воздушной сепарации и гидроклассификации.
- 6. Основы проектирования оптимальных технологических процессов в производстве строительных материалов.

ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

- 1. Изучение устройства и работы аппаратов для измельчения.
- 2. Изучение устройства и работы аппаратов грохочения.
- 3. Изучение устройства и работы аппаратов гидроклассификации.
- 4. Изучение устройства и работы аппаратов воздушной сепарации.
- 5. Расчет процессов виброформования строительных изделий.
- 6. Расчет процессов центрифугирования строительных изделий
- 7. Решение ситуационных задач по технологическим переделам с оптимизацией отдельных процессов и технологии в целом.

ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ 1. (КУРСОВОЕ ПРОЕКТИРОВАНИЕ)

- 1 Моделирование гидродинамических процессов на основе теории подобия.
- 2 Расчет механических процессов и выбор аппаратов дробильно-сортировочной установки.
- 3 Разработка технологической схемы ДСУ.
- 4 Аппараты для непрерывного транспорта строительных материалов.
- 5 Технологическое проектирование бункеров и затворов.

- 6 Технологическое проектирование циклона.7 Технологическое проектирование схемы и работы аппарата (по индивидуальному заданию).
- 8 Охрана и безопасность труда при работе технологических аппаратов.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ДИСЦИПЛИНЕ

«ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И АППАРАТЫ»

С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы по изучаемой учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
1. Механическое оборудование предприятий строительных изделий	Строительное производство	Замечаний нет	Решение кафедры – принять (протокол
2. Автоматика и автоматизация производственных процессов	Строительное производство	Замечаний нет	№ 4 от 12.04.2016)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ В УЧЕБНО-МЕТОДИЧЕСКОМ КОМПЛЕКСЕ ПО ДИСЦИПЛИНЕ

«ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ И АППАРАТЫ»

для специальности 1-70 01 01 «Производство строительных изделий и конструкций» на 2018/19 учебный год

В целях повышения качества обучения в практическом разделе изменено содержание лабораторных и практических работ. Перечень лабораторных и практических работ читать в новой редакции:

ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

- 1. Материальный баланс процессов и аппаратов.
- 2. Энергический (тепловой) баланс процессов и аппаратов.
- 3. Моделирование технологических процессов на основе теории подобия.
- 4. Подобие процессов. Моделирование аппаратов и процессов.
- 5. Анализ энергопотребления и производительности аппаратов для измельчения. Влияние среды на кинетику измельчения.
- 6. Основы проектирования аппаратов воздушной сепарации и гидроклассификации.
- 7. Основы проектирования оптимальных технологических процессов в производстве строительных материалов.

ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

- 1. Изучение устройства и работы аппаратов для измельчения.
- 2. Изучение устройства и работы аппаратов грохочения.
- 3. Изучение устройства и работы аппаратов гидроклассификации.
- 4. Изучение устройства и работы аппаратов воздушной сепарации.
- 5. Расчет процессов виброформования строительных изделий.
- 6. Расчет процессов центрифугирования строительных изделий
- 7. Решение ситуационных задач по технологическим переделам с оптимизацией технологических процессов

Учебно-методический комплекс пересмотрен и одобрен на заседании кафедры «Строительные технологии и конструкции» (протокол № 8 от 31.05.2018 г.)

Зав. кафедрой

канд. техн. наук, доцент

О. Е. Пантюхов

УТВЕРЖДАЮ:

Декан факультета ПГС

канд. техн. наук, доцент

А. Г. Ташкинов