УДК 621.822:532.54

О. И. РАБЕЦКАЯ, Е. Н. ФИСЕНКО Сибирский государственный университет науки и технологий им. акад. М. Ф. Решетнева, Красноярск, Россия

РЕЖИМ РАБОТЫ ПОДШИПНИКА СКОЛЬЖЕНИЯ С УЧЕТОМ ГРАНИЧНЫХ УСЛОВИЙ

Рассмотрено течение вязкой жидкости постоянной плотности между валом и тонким упругим цилиндрическим слоем, закреплённым в жёстком неподвижном корпусе. Получено модифицированное уравнение Рейнольдса с учетом эффекта граничного скольжения и волнистости вкладыша.

Ключевые слова: подшипник скольжения, уравнение Рейнольдса, эффект граничного скольжения.

Современная аэрокосмическая отрасль не представляется без использования различного вида подшипников. Опоры качения и скольжения, а также системы линейного перемещения используются в космических и летательных аппаратах как в силовых агрегатах и органах управления, так и в навигационном оборудовании. К опорам вращения, применяемым в аэрокосмической отрасли, предъявляются особые требования [1].

В аэрокосмической отрасли подшипники выполняют те же функции, что и в других механизмах – обеспечивают опору для вращающегося вала или оси. Подшипники воспринимают приложенные к валу радиальные и осевые нагрузки, перенося их на корпус аппарата.

Повышение надежности и долговечности подшипника скольжения возможно за счет совершенствования геометрических параметров, физико-механических свойств материалов, а также применения смазочных материалов с более высокими смазочными свойствами [2–4].

Авторами рассмотрено течение вязкой жидкости постоянной плотности между валом и тонким упругим цилиндрическим слоем, закреплённым в жёстком неподвижном корпусе. Обычно используется граничное условие отсутствия эффекта граничного скольжения, основанное на предположении о равенстве скоростей граничной поверхности и прилегающей к ней жидкости. Однако современные экспериментальные [5–7] и диагностические [8] исследования указывают на важность изучения режима трения, при котором предположение об отсутствии эффекта граничного скольжения перестает быть правомерным. Появление этого эффекта может быть связано с ослаблением прочности тонких граничных слоев твердых тел (эффект Ребиндера) [9–12].

Для описания движения масляных пленок воспользуемся уравнением Стокса:

$$\frac{\partial P}{\partial x} = \frac{\partial}{\partial z} \mu \frac{\partial u}{\partial z}, \quad \frac{\partial P}{\partial y} = \frac{\partial}{\partial z} \mu \frac{\partial v}{\partial z}, \tag{1}$$

где *Р* – давление, *и* и *v* – компоненты скорости; µ – динамический коэффициент вязкости.

Интегрируя уравнения, определяем компоненты скорости:

$$\frac{\partial u}{\partial z} = \frac{1}{\mu} \frac{\partial P}{\partial x} z + C_1; \qquad \qquad \frac{\partial v}{\partial z} = \frac{1}{\mu} \frac{\partial P}{\partial y} z + C_1; \qquad \qquad u = \frac{1}{\mu} \frac{\partial P}{\partial x} \frac{z^2}{2} + C_1 z + C_2; \qquad \qquad v = \frac{1}{\mu} \frac{\partial P}{\partial y} \frac{z^2}{2} + C_1 z + C_2. \qquad (2)$$

Для нахождения постоянных интегрирования C_{1,2} рассмотрим граничные условия общего вида

$$z = h, \quad k_2 \frac{\partial u}{\partial z} + (u - u_2) = 0;$$

$$z = 0, \quad -k_1 \frac{\partial u}{\partial z} + (u - u_1) = 0.$$
(3)

где *k*_{1,2} – коэффициенты граничного скольжения относительно границ 1, 2.

Введение указанных коэффициентов позволяет принять во внимание эффект Ребиндера, который учитывает изменение механических характеристик твердых тел при их взаимодействии с жидкостью. В частном случае, при $k_1 \rightarrow 0, k_2 \rightarrow 0$, получаем условие прилипания, используемое при выводе классического уравнения Рейнольдса.

Далее, полагая $u_1 = 0$, $u_2 = u$, $v_1 = v_2 = 0$, получим выражения для компонент скорости

$$u = \frac{1}{\mu} \frac{\partial P}{\partial x} \left[\frac{-(k_1 + z)\left(k_2 + \frac{h}{2}\right)h}{k_1 + k_2 + h} + \frac{z^2}{2} \right] + \frac{u(z + k_1)}{k_1 + k_2 + h};$$

$$v = \frac{1}{\mu} \frac{\partial P}{\partial x} \left[\frac{-(k_1 + z)\left(k_2 + \frac{h}{2}\right)h}{k_1 + k_2 + h} + \frac{z^2}{2} \right].$$
(4)

где $k_{1,2}$ – коэффициенты граничного скольжения относительно границ 1, 2.

Используя уравнение сохранения массы и переходя к безразмерным переменным, получаем модифицированное уравнение Рейнольдса

$$\frac{\partial}{\partial \tilde{t}}H + \frac{\partial}{\partial \varphi}\frac{H(H+2k_1)}{(k_1+k_2+H)} = \frac{\partial}{\partial \varphi}\left[\frac{H^2}{\tilde{\mu}}\frac{\left(H\left(4k_1+4k_2+H\right)+12k_1k_2\right)}{k_1+k_2+H}\frac{\partial \tilde{P}}{\partial \varphi}\right] + \frac{\partial}{\partial \tilde{y}}\left[\frac{H^2}{\tilde{\mu}}\frac{\left(H\left(4k_1+4k_2+H\right)+12k_1k_2\right)}{k_1+k_2+H}\frac{\partial \tilde{P}}{\partial \tilde{y}}\right].$$
(5)

Толщина смазочного слоя описывается выражением [3, 4]

$$h = \Delta (1 - \lambda \cos(x)) + CP + f_0 \cos(m_0 x), \qquad (6)$$

где $C = \frac{\sigma(1+\nu)(1-2\nu)}{E(1-\nu)}$ – коэффициент упругой деформации неподвижного

слоя толщины d, $\lambda = \eta/\Delta -$ относительный эксцентриситет, $f_0 -$ амплитуда волнистости; $m_0 -$ частота волнистости; E -модуль упругости материала, $\nu -$ коэффициент Пуассона для материала вкладыша; $\sigma -$ толщина вкладыша.

Для решения уравнения удобно перейти к безразмерным переменным:

$$P = \frac{6\mu\omega R^2}{\Delta^2} \tilde{P}; \quad h = H\Delta; \quad y = R \tilde{y}; \quad k_1 = \tilde{k}_1\Delta; \quad k_2 = \tilde{k}_2\Delta;$$
$$x = R \tilde{x}; \quad z = \Delta \tilde{z}; \quad \mu = \mu_0 \tilde{\mu}; \quad u = \omega R; \quad t = 2\tilde{t} / \omega.$$

Тогда уравнение (5) примет вид

$$\frac{\partial}{\partial \tilde{t}}H + \frac{\partial}{\partial \varphi}\frac{H\left(H + 2\tilde{k}_{1}\right)}{\left(\tilde{k}_{1} + \tilde{k}_{2} + H\right)} = \frac{\partial}{\partial \varphi}\left[\frac{H^{2}}{\tilde{\mu}}\frac{\left(H\left(4\tilde{k}_{1} + 4\tilde{k}_{2} + H\right) + 12\tilde{k}_{1}\tilde{k}_{2}\right)}{\tilde{k}_{1} + \tilde{k}_{2} + H}\frac{\partial}{\partial \varphi}\right] + \frac{\partial}{\partial \tilde{y}}\left[\frac{H^{2}}{\tilde{\mu}}\frac{\left(H\left(4\tilde{k}_{1} + 4\tilde{k}_{2} + H\right) + 12\tilde{k}_{1}\tilde{k}_{2}\right)}{\tilde{k}_{1} + \tilde{k}_{2} + H}\frac{\partial}{\partial \tilde{y}}\right].$$
(7)

Далее определим момент трения:

$$M_{fr} = \left(\frac{R_0^3 \mu \omega}{\Delta}\right) \tilde{F}; \ \tilde{F} = \int_0^{L^{2p}} 6 \left[\left[\frac{\left(\tilde{k}_1 - H/2\right)H}{\tilde{k}_1 + \tilde{k}_2 + H}\right] \frac{\partial \tilde{P}}{\partial \varphi} + \frac{1}{\left(\tilde{k}_1 + \tilde{k}_2 + H\right)} \right] d\varphi d\tilde{z}.$$
(8)

Вычислим число Зоммерфельда

$$So = \frac{\mu\omega}{2\pi \langle P \rangle R_0} \left(\frac{R}{\Delta}\right)^2 = \left(\frac{L}{D}\right) \frac{1}{3\pi \,\tilde{W}},\tag{9}$$

где $\langle P \rangle = W / (DL)$ – среднее давление.

Расчет гидродинамического течения смазки выполнялся методом установления по времени с использованием неявной конечно-разностной схемы. Параметры расчета: L/R = 1, число точек по *x* равно 200, по y - 21.

На рисунке 1 показано распределение по углу гидродинамического давления при z = 0 для трех значений коэффициента граничного скольжения. Из него видно, что с увеличением коэффициента граничного скольжения давление заметно снижается, а это приводит к повышению несущей способности подшипника. На рисунке 2 представлен график зависимости момента трения от относительного эксцентриситета для тех же значений коэффициента граничного скольжения k_1 , как на рисунке 1. График показывает, что увеличение коэффициента k_1 приводит к уменьшению момента трения.

На рисунках 3, 4 представлены графики зависимости числа Зоммерфельда и момента трения от относительного эксцентриситета тех же значений коэффициента граничного скольжения k_1 . Графики показывают, что увеличение коэффициента k_1 приводит к уменьшению числа Зоммерфельда и момента трения.

Рисунок 4 – Зависимость момента трения от относительного эксцентриситета: $I - k_1 = 0,2; k_2 = 0; 2 - k_1 = 0,1; k_2 = 0;$ $3 - k_1 = 0; k_2 = 0$

Таким образом, теоретически доказана необходимость учета эффекта граничного скольжения при предсказании поведения жидкой смазки подшипника в гидродинамическом режиме.

СПИСОК ЛИТЕРАТУРЫ

1 **Трифонов, Г. И.** Усовершенствование авиационных подшипников скольжения с помощью газотермической обработки и конструкторских модификаций / Г. И. Трифонов, Д. В. Митрофанов // Воздушно-космические силы. Теория и практика. – 2017. – № 4. – С. 61–67.

2 **Roberts, E. W.** Space tribology: its role in spacecraft mechanisms / E. W. Roberts // Journal of Physics D: Applied Physics. – 2012. – Vol. 45, no. 50. – Paper 503001. – 17 p.

3 **Беркович, И. И.** Трибология. Физические основы, механика и технические приложения : учебник для вузов / И. И. Беркович, Д. Г. Громаковский ; под ред. Д. Г. Громаковского; Самар. гос. техн. ун-т. – Самара, 2000. – 268 с.

4 Lince, J. R. Effective application of solid lubricants in spacecraft mechanisms / J. R. Lince // Lubricants. – 2020. – Vol. 8, no. 7. – Paper 74. – 57 p.

5 Костецкий, Б. И. Механохимические процессы при граничном трении / Б. И. Костецкий, М. Э. Натансон, Л. М. Бершадский. – М. : Наука, 1972. – 170 с.

6 Reliability assessment of spherical plain bearing based on an independent incremental process / J. X. Li [et al.] // International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2019). – Hunan : IEEE, 2019. – P. 28–33.

7 **Baka, E.** Calculation of the hydrodynamic load carrying capacity of porous journal bearings / Ernő Baka// Periodica Polytechnica Mechanical Engineering. -2002. - Vol. 46, no. 1. - P. 3-14.

8 **Zhu, Y.** Limits of the Hydrodynamic No-Slip Boundary Condition / Y. Zhu, S. Granick // Physical Review Letters. – 2002. – Vol. 88, no. 10. – P. 106–110.

9 Health monitoring on the spacecraft bearings in high-speed rotating systems by using the clustering fusion of normal acoustic parameters / D. Wu [et al.] // Applied Sciences. -2019. - Vol. 9, no. 16. - Paper 3246. -19 p.

10 **Терентьев, В. Ф.** Влияние волнистости рабочей поверхности на динамические характеристики подшипникового узла скольжения / В. Ф. Терентьев, О. И. Рабецкая, Н. В. Еркаев // Изв. вузов. Машиностроение. – 2004. – № 10. – С. 58–61.

11 **Рабецкая, О. И.** Движение смазки в подшипниках скольжения при граничном режиме трения / О. И. Рабецкая // Вестник КрасГАУ. – 2007. – № 4. – С. 146–152.

12 Lee, Y. J. Current understanding of surface effects in microcutting / Y. J. Lee, H. Wang // Materials & Design. – 2020. – Vol. 192. – Paper 108688. – 26 p.

O. I. RABETSKAYA, E. N. FISENKO

Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia

OPERATING MODE OF THE SLIDING BEARING TAKING INTO ACCOUNT THE BOUNDARY CONDITIONS

The flow of a viscous fluid of constant density between a shaft and a thin elastic cylindrical layer fixed in a rigid stationary body is considered. A modified Reynold's equation is developed taking into account the effect of boundary sliding and the insert waviness.

Keywords: plain bearing, Reynold's equation, boundary slip effect.

Получено 04.05.2021